

Modern C++ ProgrammingModern C++ Programming
for Macintoshfor Macintosh

Darin AdlerDarin Adler
Bent Spoon SoftwareBent Spoon Software

MacHack, June 1998MacHack, June 1998

How I’ll tell this storyHow I’ll tell this story

• I recently wrote a simple program I recently wrote a simple program
called CD Researcher using called CD Researcher using
PowerPlant and the C++ library.PowerPlant and the C++ library.

• This is some of what I learned by This is some of what I learned by
doing that project.doing that project.

• I’ll use examples from CD Researcher.I’ll use examples from CD Researcher.

What I won’t coverWhat I won’t cover

• I had intended to discuss PowerPlant I had intended to discuss PowerPlant
Appearance Manager classes.Appearance Manager classes.

• I had intended to discuss PowerPlant I had intended to discuss PowerPlant
Internet and Networking classes.Internet and Networking classes.

• They are great!They are great!

• Sadly, not enough time for them.Sadly, not enough time for them.

Do you program for Do you program for
Macintosh using C++?Macintosh using C++?

• If so, you may find these tips useful.If so, you may find these tips useful.

• You can go right back to work and use You can go right back to work and use
these right away.these right away.

• If you are a C++ veteran (like me, I If you are a C++ veteran (like me, I
started on the Finder in C++ in 1988), started on the Finder in C++ in 1988),
some of these features will seem new.some of these features will seem new.

A few principlesA few principles

• No compromise on the interface and No compromise on the interface and
features that the user sees.features that the user sees.

• ““Leave no place for the bugs to hide.”Leave no place for the bugs to hide.”
— Bill Atkinson— Bill Atkinson

• Include error handling from the start.Include error handling from the start.

• Write as little code as possible.Write as little code as possible.

No compromises?No compromises?

• Design of the program comes first.Design of the program comes first.

• Try not to let implementation issues affect Try not to let implementation issues affect
the design too much.the design too much.

• Start implementing so you can iterate the Start implementing so you can iterate the
human interface.human interface.

• Stop designing at some point so you can Stop designing at some point so you can
finish the program.finish the program.

How to write less codeHow to write less code

• Learn the libraries.Learn the libraries.

• Use the libraries.Use the libraries.

• Find high-quality free software.Find high-quality free software.

• Make thin classes.Make thin classes.

• Don’t copy and paste code — make and Don’t copy and paste code — make and
use helper functions and classes.use helper functions and classes.

Learn the librariesLearn the libraries

• Decide early what environment you are Decide early what environment you are
programming for.programming for.

• Current versions of Metrowerks tools Current versions of Metrowerks tools
support many C++ features and library support many C++ features and library
functions that were not available a few functions that were not available a few
years back.years back.

• Read books.Read books.

C++ booksC++ books

• The C++ Programming Language,The C++ Programming Language,
Third EditionThird Edition
Bjarne Stroustrup, 1997Bjarne Stroustrup, 1997
ISBN 0-201-88954-4ISBN 0-201-88954-4

• Way beyond the first two editions.Way beyond the first two editions.

• Indispensable.Indispensable.

• Get as late a printing as possible.Get as late a printing as possible.

C++ books C++ books (2)(2)

• Effective C++, Second Edition:Effective C++, Second Edition:
50 Specific Ways to Improve Your 50 Specific Ways to Improve Your
Programs and DesignsPrograms and Designs
Scott Meyers, 1998Scott Meyers, 1998
ISBN 0-201-92488-9ISBN 0-201-92488-9

• Important advice on every page.Important advice on every page.

C++ books C++ books (3)(3)

• More Effective C++: 35 New Ways to More Effective C++: 35 New Ways to
Improve Your Programs and DesignsImprove Your Programs and Designs
Scott Meyers, 1996Scott Meyers, 1996
ISBN 0-201-63371-XISBN 0-201-63371-X

• As useful as the first, but covers As useful as the first, but covers
newer language and library features.newer language and library features.

C++ books C++ books (4)(4)

• Design Patterns: Elements ofDesign Patterns: Elements of
Reusable Object-Oriented SoftwareReusable Object-Oriented Software
Eric Gamma, Richard Helm,Eric Gamma, Richard Helm,
Ralph Johnson, John Vlissides, 1995Ralph Johnson, John Vlissides, 1995
ISBN 0-201-63361-2ISBN 0-201-63361-2

• Learn it here or learn it the hard way.Learn it here or learn it the hard way.

C++ books C++ books (5)(5)

• Ruminations on C++: A Decade of Ruminations on C++: A Decade of
Programming Insight and ExperienceProgramming Insight and Experience
Andrew Koenig, Barbara Moo, 1997Andrew Koenig, Barbara Moo, 1997
ISBN 0-201-42339-1ISBN 0-201-42339-1

• Tons of useful stuff.Tons of useful stuff.

C++ books C++ books (6)(6)

• The Design and Evolution of C++The Design and Evolution of C++
Bjarne Stroustrup, 1994Bjarne Stroustrup, 1994
ISBN 0-201-54330-3ISBN 0-201-54330-3

• Fascinating insight into language Fascinating insight into language
design.design.

• If read carefully, explains much about If read carefully, explains much about
the language as it stands today.the language as it stands today.

ExceptionsExceptions

• Include exception code from the start.Include exception code from the start.

• Two kinds of exception code.Two kinds of exception code.
– Exception-safe coding: routines that won’t Exception-safe coding: routines that won’t

leave anything in a bad state if terminated by leave anything in a bad state if terminated by
exception.exception.

– Exception handling: catching any expected Exception handling: catching any expected
exceptions and reporting the corresponding exceptions and reporting the corresponding
errors to the user.errors to the user.

Exception-safe codingException-safe coding

• Use auto_ptr instead of delete.Use auto_ptr instead of delete.

• For any “open/close” idiom, use a For any “open/close” idiom, use a
constructor/destructor cover class.constructor/destructor cover class.
– PowerPlant provides many of these.PowerPlant provides many of these.
– Make your own.Make your own.

No pointersNo pointers

• Most crashes in C++ programs come Most crashes in C++ programs come
from problems with pointers.from problems with pointers.

• Three kinds of problems:Three kinds of problems:
– Nil pointers.Nil pointers.
– Stale pointers to deleted objects.Stale pointers to deleted objects.
– Incorrect pointer arithmetic.Incorrect pointer arithmetic.

Nil pointer problemsNil pointer problems

• Use exceptions when creating objects Use exceptions when creating objects
with new.with new.

• Use references when possible instead.Use references when possible instead.

• Check for nil after every Check for nil after every
dynamic_cast.dynamic_cast.

Stale pointer problemsStale pointer problems

• Use library collection classes instead of Use library collection classes instead of
C built-in arrays created with new.C built-in arrays created with new.

• Use auto_ptr instead of delete.Use auto_ptr instead of delete.
– Note that auto_ptr does not work properly Note that auto_ptr does not work properly

with arrays created by new [].with arrays created by new [].

• Don’t retain pointers or iterators into Don’t retain pointers or iterators into
collections when modifying them.collections when modifying them.

Pointer arithmetic problemsPointer arithmetic problems

• Keep direct manipulation of Keep direct manipulation of
collections to a few routines.collections to a few routines.

• Most code should use high level Most code should use high level
operations instead.operations instead.

• Keep type casts to a minimum.Keep type casts to a minimum.

Minimizing type castsMinimizing type casts

• Use the new type cast syntax.Use the new type cast syntax.

• Study each cast carefully to know why Study each cast carefully to know why
you are doing a type cast.you are doing a type cast.

• Think of each type cast as a place for a Think of each type cast as a place for a
possible bug.possible bug.

• Use implicit type conversion instead.Use implicit type conversion instead.

Old style castsOld style casts

• Two syntaxes, both dangerous.Two syntaxes, both dangerous.

• (X)y is traditional C cast syntax.(X)y is traditional C cast syntax.

• X(y) is function call style syntax.X(y) is function call style syntax.

implicit_castimplicit_cast

• Not part of the language.Not part of the language.

• A way to express automatic type A way to express automatic type
conversions without having to conversions without having to
introduce a local variable of the introduce a local variable of the
desired type.desired type.

• Use a local variable instead.Use a local variable instead.

Code snippetCode snippet

template <class X, class Y>template <class X, class Y>
X implicit_cast(const Y& x)X implicit_cast(const Y& x)
{{
 return x; return x;
}}

const_castconst_cast

• Safest cast; still avoid when possible.Safest cast; still avoid when possible.

• Can only change “const” and Can only change “const” and
“volatile” characteristics“volatile” characteristics

• Use mutable keyword instead.Use mutable keyword instead.

• Needed when providers of a Needed when providers of a
programming interface neglect const.programming interface neglect const.

static_caststatic_cast

• Used for “upcasting” to a class higher Used for “upcasting” to a class higher
in the class hierarchy.in the class hierarchy.

• Rarely needed, but fairly safe.Rarely needed, but fairly safe.

dynamic_castdynamic_cast

• Used for “downcasting” in a class Used for “downcasting” in a class
hierarchy with virtual functions.hierarchy with virtual functions.

• If used on a pointer, check for nil.If used on a pointer, check for nil.

• If used on a reference, note exception.If used on a reference, note exception.

• Required by idiom in almost all Required by idiom in almost all
PowerPlant pane programming.PowerPlant pane programming.

reinterpret_castreinterpret_cast

• Most dangerous cast, still needed Most dangerous cast, still needed
sometimes.sometimes.

• Only way to convert pointers between two Only way to convert pointers between two
unrelated types.unrelated types.

• For example, needed to change char* to For example, needed to change char* to
unsigned char*.unsigned char*.

• Also converts pointers to integers.Also converts pointers to integers.

Casts in CD ResearcherCasts in CD Researcher

• No uses of implicit_cast.No uses of implicit_cast.

• 3 uses of const_cast.3 uses of const_cast.
– LDragTask constructorLDragTask constructor
– LTCPEndpoint::LTCPEndpoint::SendDataSendData
– ICLaunchURLICLaunchURL

• No uses of static_cast.No uses of static_cast.

Code snippetCode snippet

std::stringstd::string
AsString(const LString& in)AsString(const LString& in)
{{
 ConstStr255Param str255(in); ConstStr255Param str255(in);
 return AsString(str255); return AsString(str255);
}}

Code snippetCode snippet

voidvoid
CInternetConfig::LaunchURL(CInternetConfig::LaunchURL(
 const std::string& location, const std::string& location,
 const std::string& defaultScheme) const std::string& defaultScheme)
{{
 long start(0); long start(0);
 long end(location.length()); long end(location.length());
 ICLaunchURL(mInternetConfig.mInstance, ICLaunchURL(mInternetConfig.mInstance,
 AsStr255(defaultScheme), AsStr255(defaultScheme),
 const_cast<Ptr>(location.data()), const_cast<Ptr>(location.data()),
 location.length(), &start, &end); location.length(), &start, &end);
}}

Casts in CD Researcher Casts in CD Researcher (2)(2)

• 8 uses of dynamic_cast.8 uses of dynamic_cast.
– 4 pointer casts.4 pointer casts.
– 2 reference casts.2 reference casts.
– 2 versions of FindPane.2 versions of FindPane.

• 22 uses of FindPane.22 uses of FindPane.

• Traversing PowerPlant’s hierarchies.Traversing PowerPlant’s hierarchies.

Code snippetCode snippet

template <class T> Ttemplate <class T> T
FindPane(LPane* pane, PaneIDT paneID, T& result)FindPane(LPane* pane, PaneIDT paneID, T& result)
{{
 result = dynamic_cast<T> result = dynamic_cast<T>
 (pane->FindPaneByID(paneID)); (pane->FindPaneByID(paneID));
 ThrowIfNil_(result); ThrowIfNil_(result);
 return result; return result;
}}

Casts in CD Researcher Casts in CD Researcher (3)(3)

• 25 uses of reintepret_cast.25 uses of reintepret_cast.
– Getting at data in Macintosh handles.Getting at data in Macintosh handles.
– Converting between Str255 unsigned Converting between Str255 unsigned

char and C and C++ strings with char.char and C and C++ strings with char.
– Converting void* pointers used by Converting void* pointers used by

PowerPlant Lbroadcaster interface.PowerPlant Lbroadcaster interface.

Code snippetCode snippet

std::stringstd::string
CCDResearcher::Version()CCDResearcher::Version()
{{
 // Read the 'vers' 1 resource. // Read the 'vers' 1 resource.
 StCurResFile application(LMGetCurApRefNum()); StCurResFile application(LMGetCurApRefNum());
 StResource resource('vers', 1); StResource resource('vers', 1);
 VersRecHndl handle(reinterpret_cast VersRecHndl handle(reinterpret_cast
 <VersRecHndl>(versionResource.mResourceH)); <VersRecHndl>(versionResource.mResourceH));
 return AsString((**handle).shortVersion); return AsString((**handle).shortVersion);
}}

std::auto_ptrstd::auto_ptr

• Just say no to delete.Just say no to delete.

• Effective C++Effective C++ shows that you can’t do shows that you can’t do
delete in a destructor correctly for all delete in a destructor correctly for all
exception cases without auto_ptr.exception cases without auto_ptr.

• Do not use auto_ptr on array pointers.Do not use auto_ptr on array pointers.

• Implementations differ, but the concept is Implementations differ, but the concept is
stable.stable.

Code snippetCode snippet

class CCDDBThread { // most of class omittedclass CCDDBThread { // most of class omitted
 auto_ptr<CCDDBConnection> mConnection; auto_ptr<CCDDBConnection> mConnection;
};};

CCDDBThread::CCDDBThread(CCDCatalog* catalog)CCDDBThread::CCDDBThread(CCDCatalog* catalog)
 : LThread(false) : LThread(false)
 , mCatalog(catalog) , mCatalog(catalog)
 , mConnection(CreateCDDBConnection()) , mConnection(CreateCDDBConnection())
{{
 catalog->ThreadBirth(this); catalog->ThreadBirth(this);
 Resume(); Resume();
}}

CollectionsCollections

• Use them each when appropriate.Use them each when appropriate.

• Learn their theory, implementation, Learn their theory, implementation,
how to use standard algorithms.how to use standard algorithms.

• Avoid obsessing on implementation.Avoid obsessing on implementation.

• Example: stack and queue are built Example: stack and queue are built
from vector and deque; ignore that.from vector and deque; ignore that.

Collections Collections (2)(2)

• std::vector is a dynamic replacement for std::vector is a dynamic replacement for
built-in C arrays.built-in C arrays.

• std::stack, stacks, std::queue, queues.std::stack, stacks, std::queue, queues.

• std::deque when you need to delete from or std::deque when you need to delete from or
insert at both ends.insert at both ends.

• std::list when you need add and delete in the std::list when you need add and delete in the
middle, don’t need to index.middle, don’t need to index.

Collections Collections (3)(3)

• std::map and std::multimap make a std::map and std::multimap make a
dictionary out of any two types.dictionary out of any two types.

• std::set and std::multiset keep items in std::set and std::multiset keep items in
sorted order.sorted order.

• Maps slightly more useful then sets.Maps slightly more useful then sets.

• Use [] syntax for getting at maps.Use [] syntax for getting at maps.

Code snippetCode snippet

mutable map<ResIDT, IconSuiteRef> mIconCache;mutable map<ResIDT, IconSuiteRef> mIconCache;

IconSuiteRef CCDCatalogOutlineDisc::Icon() constIconSuiteRef CCDCatalogOutlineDisc::Icon() const
{{
 IconSuiteRef icon(mIconCache[mCurrentIconID]); IconSuiteRef icon(mIconCache[mCurrentIconID]);
 if (icon == nil) { if (icon == nil) {
 GetIconSuite(&icon, mCurrentIconID, GetIconSuite(&icon, mCurrentIconID,
 kSelectorAllSmallData); kSelectorAllSmallData);
 mIconCache[mCurrentIconID] = icon; mIconCache[mCurrentIconID] = icon;
 } }
 return icon; return icon;
}}

Collections Collections (4)(4)

• Avoid collections of pointers.Avoid collections of pointers.

• Must use __MSL_FIX_ITERATORS__ Must use __MSL_FIX_ITERATORS__
when using certain collections.when using certain collections.

The iterator trapThe iterator trap

• Iterator interfaces work on all Iterator interfaces work on all
collections, are used by generic collections, are used by generic
algorithms.algorithms.

• It’s easy to forget that there are clearer It’s easy to forget that there are clearer
interfaces to many collections.interfaces to many collections.

• For example, you can index into a vector For example, you can index into a vector
with [] and an integer.with [] and an integer.

A pearl from PerlA pearl from Perl

• Perl programmers love hashes,Perl programmers love hashes,
also known as associative arrays.also known as associative arrays.

• Make a Perl-style hash in C++.Make a Perl-style hash in C++.
– std::map<std::string, std::string>std::map<std::string, std::string>
– Use [] to get or set elements.Use [] to get or set elements.
– Use iterators to check if element exists.Use iterators to check if element exists.

• Or write a function or template.Or write a function or template.

std::stringstd::string

• Easy to use: like C strings, but with Easy to use: like C strings, but with
automatic storage management.automatic storage management.

• May not be suitable for large amounts May not be suitable for large amounts
of text that need to be modified.of text that need to be modified.
– Consider SGI’s rope class instead.Consider SGI’s rope class instead.

• Used everywhere in CD Researcher.Used everywhere in CD Researcher.

Code snippetCode snippet

class CCDDBConnection {class CCDDBConnection {
 public: public:
 virtual ~CCDDBConnection(); virtual ~CCDDBConnection();
 virtual std::string SendCommand(virtual std::string SendCommand(
 const std::string&) = 0; const std::string&) = 0;
};};

std::ostringstreamstd::ostringstream

• Replacement for Replacement for sprintfsprintf().().

• Easy to use. Safe.Easy to use. Safe.

• Best reference is Stroustrup, 3rd ed.Best reference is Stroustrup, 3rd ed.

• Used 20 places in CD Researcher.Used 20 places in CD Researcher.

Code snippetCode snippet

std::stringstd::string
CCompactDisc::TimeAsString(unsigned long time)CCompactDisc::TimeAsString(unsigned long time)
{{
 std::ostringstream result; std::ostringstream result;
 unsigned seconds((time + kFramesPerSecond / 2) unsigned seconds((time + kFramesPerSecond / 2)
 / kFramesPerSecond); / kFramesPerSecond);
 unsigned minutes(seconds / 60); unsigned minutes(seconds / 60);
 seconds %= 60; seconds %= 60;
 result << minutes << ':' result << minutes << ':'
 << seconds / 10 << seconds % 10; << seconds / 10 << seconds % 10;
 return result.str(); return result.str();
}}

std::istringstreamstd::istringstream

• Replacement for Replacement for sscanfsscanf().().

• Easy to use. Safe.Easy to use. Safe.

• Streams go into an error state when they Streams go into an error state when they
see bad input data.see bad input data.

• Best reference is Stroustrup, 3rd ed.Best reference is Stroustrup, 3rd ed.

• Used 12 places in CD Researcher.Used 12 places in CD Researcher.

Code snippetCode snippet

unsignedunsigned
StringAsTime(const std::string& timeString)StringAsTime(const std::string& timeString)
{{
 std::istringstream in(timeString); std::istringstream in(timeString);
 unsigned time(0); in >> time; unsigned time(0); in >> time;
 char c; char c;
 if (in.get(c) && c == ':') { if (in.get(c) && c == ':') {
 float seconds(0); in >> seconds; float seconds(0); in >> seconds;
 time *= kFramesPerMinute; time *= kFramesPerMinute;
 time += (seconds * kFramesPerSecond + .5); time += (seconds * kFramesPerSecond + .5);
 } }
 return time; return time;
}}

String conversionsString conversions

• Use c_str() to make a C string from a Use c_str() to make a C string from a
std::string.std::string.

• Use data() to get a pointer to raw data Use data() to get a pointer to raw data
in a std::string.in a std::string.

• Use str() to make a std::string from a Use str() to make a std::string from a
std::ostringstream.std::ostringstream.

Make std::string work with Make std::string work with
Pascal string (Str255)Pascal string (Str255)

• Need conversion from Str255 to Need conversion from Str255 to
std::string.std::string.

• Need conversion from std::string to Need conversion from std::string to
suitable Pascal-string parameter.suitable Pascal-string parameter.

• C++ wrapper with conversion operator is C++ wrapper with conversion operator is
an excellent solution for the string an excellent solution for the string
parameter case.parameter case.

Code snippetCode snippet

class Str255Converter {class Str255Converter {
 public: public:
 Str255Converter(const std::string&); Str255Converter(const std::string&);
 operator const unsigned char*() const; operator const unsigned char*() const;
 private: private:
 Str255 mStr255; Str255 mStr255;
};};

std::string AsString(ConstStr255Param);std::string AsString(ConstStr255Param);
Str255Converter AsStr255(const std::string&);Str255Converter AsStr255(const std::string&);
void CopyToStr255(const std::string&, Str255);void CopyToStr255(const std::string&, Str255);

Make std::string work with Make std::string work with
Macintosh HandleMacintosh Handle

• Need a routine that converts a Handle Need a routine that converts a Handle
into a std::string.into a std::string.

• Also useful to have a version that Also useful to have a version that
disposes the Handle afterwards.disposes the Handle afterwards.

Code snippetCode snippet

std::stringstd::string
AsString(Handle handle)AsString(Handle handle)
{{
 MoveHHi(handle); MoveHHi(handle);
 StHandleLocker lock(handle); StHandleLocker lock(handle);
 return std::string(*handle, return std::string(*handle,
 GetHandleSize(handle)); GetHandleSize(handle));
}}

Learn C++ “physics”Learn C++ “physics”

• Effective C++Effective C++ books cover this well. books cover this well.

• Special members:Special members:
– ConstructorsConstructors
– DestructorsDestructors
– Copy constructorsCopy constructors
– Assignment operatorsAssignment operators
– Type conversion operatorsType conversion operators

Learn C++ “physics” Learn C++ “physics” (2)(2)

• Consider implementing or disallowing Consider implementing or disallowing
copying of each class you define.copying of each class you define.

• Make destructors virtual when using Make destructors virtual when using
inheritance for polymorphism.inheritance for polymorphism.

• Use operator overloading when it Use operator overloading when it
makes sense, but avoid “clever” uses.makes sense, but avoid “clever” uses.

Module buildingModule building

• You are building a program, not a set of You are building a program, not a set of
general purpose libraries.general purpose libraries.

• Class designs should be “industrial Class designs should be “industrial
strength,” but implementations need not strength,” but implementations need not
be thorough.be thorough.

• Missing implementation is better than Missing implementation is better than
partial or incorrect implementation.partial or incorrect implementation.

Module building Module building (2)(2)

• Feel free to have more interface than Feel free to have more interface than
implementation.implementation.
– You can implement when you need it.You can implement when you need it.

• Learn to use the linker to tell you what Learn to use the linker to tell you what
code you still need to write.code you still need to write.

Thin classesThin classes

• Sure sign of design problems in C++ is a Sure sign of design problems in C++ is a
“fat” interface.“fat” interface.

• Strive for thinnest possible interface.Strive for thinnest possible interface.
– Easy to understand, maintain.Easy to understand, maintain.

• PowerPlant classes tend a bit to fatness PowerPlant classes tend a bit to fatness
but are thinner than those of its ancestor, but are thinner than those of its ancestor,
MacApp.MacApp.

Thin classes Thin classes (2)(2)

• Thin interfaces are more important Thin interfaces are more important
than thin implementations.than thin implementations.

• Avoid temptation to make all Avoid temptation to make all
operations member functions.operations member functions.

• If it can be done with the public If it can be done with the public
interface, consider separate function.interface, consider separate function.

Code snippetCode snippet

class CCDDrive {class CCDDrive {
 public: public:
 class Iterator { class Iterator {
 public: public:
 Iterator(); Iterator();
 bool More() const; bool More() const;
 CCDDrive Next(); CCDDrive Next();
 }; };
 CCompactDisc ReadTrackList() const; CCompactDisc ReadTrackList() const;
 bool AudioCD() const; bool AudioCD() const;
 bool Empty() const; bool Empty() const;
 void Eject() const; void Eject() const;
};};

3 interfaces per class3 interfaces per class

• Caller interface.Caller interface.
– Public members, including any inherited Public members, including any inherited

public members.public members.
– Copy constructor and default assignment Copy constructor and default assignment

operator are part of the public interface operator are part of the public interface
unless explicitly declared.unless explicitly declared.

– Default constructor is part of the public Default constructor is part of the public
interface unless constructor is declared.interface unless constructor is declared.

3 interfaces per class 3 interfaces per class (2)(2)

• Subclass interface.Subclass interface.
– Public and protected members, including Public and protected members, including

inherited public and protected members.inherited public and protected members.
– Virtual functions and calls to virtual Virtual functions and calls to virtual

functions.functions.

• If all constructors are private, then If all constructors are private, then
there is no subclass interface.there is no subclass interface.

3 interfaces per class 3 interfaces per class (3)(3)

• Calling interface.Calling interface.
– The most subtle of the three interfaces.The most subtle of the three interfaces.
– Calls made by the class, including calls Calls made by the class, including calls

to inherited member functions and to to inherited member functions and to
outside functions and member functions.outside functions and member functions.

Kinds of classesKinds of classes

• To implement polymorphism, make To implement polymorphism, make
base classes with virtual functions.base classes with virtual functions.
– Must use pointers and references.Must use pointers and references.
– Use auto_ptr to hold these.Use auto_ptr to hold these.
– Don’t forget to either implement or Don’t forget to either implement or

disallow copying and assignment.disallow copying and assignment.

Kinds of classes Kinds of classes (2)(2)

• To implement simple interfaces, make To implement simple interfaces, make
small concrete classes that can be small concrete classes that can be
used on stack.used on stack.
– No virtual functions.No virtual functions.
– Sometimes use pointers and Sometimes use pointers and

polymorphism within the implementation.polymorphism within the implementation.
– Great for parameters, return values.Great for parameters, return values.

CLocalCDDatabaseCLocalCDDatabase

class CLocalCDDatabase {class CLocalCDDatabase {
 public: public:
 class DatabaseFull { }; class DatabaseFull { };
 CLocalCDDatabase(); CLocalCDDatabase();
 ~CLocalCDDatabase(); ~CLocalCDDatabase();
 bool Get(CCompactDisc&); bool Get(CCompactDisc&);
 void Set(const CCompactDisc&) void Set(const CCompactDisc&)
 throw(ExceptionCode, DatabaseFull); throw(ExceptionCode, DatabaseFull);
};};

Kinds of classes Kinds of classes (3)(3)

• Smooth interfaces with tiny classes.Smooth interfaces with tiny classes.
– Iterator classes, not to be confused with Iterator classes, not to be confused with

library iterators.library iterators.
– Type conversion classes like the one Type conversion classes like the one

used to convert std::string to Str255.used to convert std::string to Str255.
– Aggregates for simple concepts like Aggregates for simple concepts like

“longitude/latitude pair”.“longitude/latitude pair”.

Code snippetCode snippet

class CMapLocation {class CMapLocation {
 public: public:
 CMapLocation(); CMapLocation();
 static CMapLocation Degrees(static CMapLocation Degrees(
 double latitude, double longitude); double latitude, double longitude);
 static CMapLocation Radians(static CMapLocation Radians(
 double latitude, double longitude); double latitude, double longitude);
 double LatitudeInDegrees() const; double LatitudeInDegrees() const;
 double LongitudeInDegrees() const; double LongitudeInDegrees() const;
 double LatitudeInRadians() const; double LatitudeInRadians() const;
 double LongitudeInRadians() const; double LongitudeInRadians() const;
 bool operator ==(const CMapLocation&) const; bool operator ==(const CMapLocation&) const;
};};

Things that don’t workThings that don’t work

• Collection class implementations have Collection class implementations have
excessive overhead if you have lots of excessive overhead if you have lots of
small collections; Metrowerks can fix.small collections; Metrowerks can fix.

• Member function templates do not work Member function templates do not work
yet, which can be awkward.yet, which can be awkward.

• Multiple inheritance — virtual base Multiple inheritance — virtual base
classes with data members.classes with data members.

Things that don’t work Things that don’t work (2)(2)

• Exception specifications.Exception specifications.

• Too much is imported when you use a Too much is imported when you use a
header like <stdlib.h>, because the header like <stdlib.h>, because the
current Metrowerks headers do “using current Metrowerks headers do “using
namespace std”, which imports the namespace std”, which imports the
entire namespace, instead of entire namespace, instead of
importing each item in the header.importing each item in the header.

Features I wish forFeatures I wish for

• Warning on use of old-style casts.Warning on use of old-style casts.

• A workable model for checking A workable model for checking
exception specifications.exception specifications.

• Debugging that works well with Debugging that works well with
template classes and the standard template classes and the standard
collection classes.collection classes.

CD ResearcherCD Researcher

• Did it for fun.Did it for fun.

• Pieces of the source code available on Pieces of the source code available on
request (send me email).request (send me email).

• Available from Spinfree asAvailable from Spinfree as
Audiofile Internet Companion.Audiofile Internet Companion.

Go do it!Go do it!

• I learned lots of new techniques while I learned lots of new techniques while
working on CD Researcher.working on CD Researcher.

• The new C++ language and library The new C++ language and library
features make it easier to write intricate features make it easier to write intricate
but bug-free programs.but bug-free programs.

• Consider using these tools when Consider using these tools when
working on your next project.working on your next project.

	Slide 1
	Modern C++ Programming for Macintosh
	How I’ll tell this story
	What I won’t cover
	Do you program for Macintosh using C++?
	A few principles
	No compromises?
	How to write less code
	Learn the libraries
	C++ books
	C++ books (2)
	C++ books (3)
	C++ books (4)
	C++ books (5)
	C++ books (6)
	Exceptions
	Exception-safe coding
	No pointers
	Nil pointer problems
	Stale pointer problems
	Pointer arithmetic problems
	Minimizing type casts
	Old style casts
	implicit_cast
	Code snippet
	const_cast
	static_cast
	dynamic_cast
	reinterpret_cast
	Casts in CD Researcher
	Slide 31
	Slide 32
	Casts in CD Researcher (2)
	Slide 34
	Casts in CD Researcher (3)
	Slide 36
	std::auto_ptr
	Slide 38
	Collections
	Collections (2)
	Collections (3)
	Slide 42
	Collections (4)
	The iterator trap
	A pearl from Perl
	std::string
	Slide 47
	std::ostringstream
	Slide 49
	std::istringstream
	Slide 51
	String conversions
	Make std::string work with Pascal string (Str255)
	Slide 54
	Make std::string work with Macintosh Handle
	Slide 56
	Learn C++ “physics”
	Learn C++ “physics” (2)
	Module building
	Module building (2)
	Thin classes
	Thin classes (2)
	Slide 63
	3 interfaces per class
	3 interfaces per class (2)
	3 interfaces per class (3)
	Kinds of classes
	Kinds of classes (2)
	CLocalCDDatabase
	Kinds of classes (3)
	Slide 71
	Things that don’t work
	Things that don’t work (2)
	Features I wish for
	CD Researcher
	Go do it!
	Slide 77

